C3 Glomerululopathy: The Past, Present, and Future of Treatment Paradigms

Bradley P. Dixon, MD FASN
Associate Professor of Pediatrics and Medicine
Renal Section, Department of Pediatrics,
University of Colorado School of Medicine

January 26th, 2019
Western Society of Pediatric Nephrology Conference
MPGN: The Past Disease Paradigm

- **MPGN Type I**
 - Classical pathway activation by immune complexes
 - Typically low C3 and C4, subendothelial deposits on EM

- **MPGN Type II**
 - Alternative pathway activation (i.e. C3NeF, Factor H deficiency)
 - Typically very low C3 but normal C4
 - Intramembranous, very dense ribbon-like deposits on EM

- **MPGN Type III (Strife, Anders variants)**
 - Alternative and terminal pathway activation (C3NeF)
 - Low C3 and normal C4, subendothelial & subepithelial deposits, basement membrane fragmentation on EM
MPGN: The Past Treatment Paradigm

- **Corticosteroids**
 - Prednisone 40mg/m² every other day, mean duration 41 months
 - Favorable response to long term course of steroids, but with significant steroid toxicity noted
 - Prednisone 2mg/kg every other day initially, slowly reduced over 6-8 years
 - Earlier treatment (<1 yr after diagnosis) = favorable outcome
 - MPGN Type I with greater response than MPGN Type III

- **Cyclophosphamide, calcineurin inhibitors, MMF, rituximab also used in small studies**
C3G and IC-MPGN: The New Classification System

- Depends on magnitude of C3 staining on kidney biopsy (Fakhouri et al, *Nat Rev Nephrol* 2010)
 - Categorized by mechanism of disease (presence or scarcity/absence of immunoglobulin staining on IF)
 - C3G: Isolated or Predominant C3 staining
 - IC-MPGN: C3 staining \(\leq\) IgG/IgA/IgM
- Replaced classification of MPGN types I, II, III
C3 Glomerulopathy

• Consists of two diseases: Dense Deposit Disease (DDD) and C3 Glomerulonephritis (C3GN)
 – Due to defective regulation of alternative complement pathway
 • Typically low C3, normal C4
 • Autoantibody mediated (C3 Nephritic Factor [C3NeF], C4NeF, C5NeF, Factor H Autoantibody, Factor B Autoantibody) in 80% of DDD, ~50-60% of C3GN
 • Genetic abnormality (CFH mutations and polymorphisms, C3 and CFB mutations) in ~10-15% of DDD and C3GN
 – Clinical presentation for both entities variable
 • Asymptomatic microscopic hematuria/proteinuria, acute glomerulonephritis, nephrotic syndrome, RPGN
C3 Glomerulopathy

- Treatment Paradigms: The Present
 - Immunosuppression
 - Based on treatments found to be effective in some patients with the previous entity, MPGN
 - Complement-Targeted Therapy
 - Based on newer understanding of the pathomechanisms of C3 Glomerulopathy

Children's Hospital Colorado

Affiliated with
University of Colorado Anschutz Medical Campus
Immunosuppression in C3G

• Retrospective Cohort Study by Rabasco et al (Kidney Int, 2015)
• 60 Patients with C3GN
 – 20 patients with no IST (supportive care only)
 – 22 patients treated with MMF + corticosteroids
 – 18 patients treated with other IST regimens
 – 90% of patients also treated with ACEi/ARB
 – Median followup of 47 months (range 16-93 months)
Immunosuppression in C3G

• IST dosing
 – Corticosteroids started 1mg/kg/d initially, “slowly tapering” to maintenance doses of 2.5-5mg/day or completely withdrawing
 – In MMF-IST group, MMF median initial dose 1g/day (range 0.75-2g/day) and median duration of 18 months (range 10-49 months)
 – In Other IST group, corticosteroids alone or corticosteroids + cyclophosphamide
Immunosuppression in C3G

Results

- ESRD in 10/60 patients (17% of cohort)
 - 7/20 (35%) of Non-IST patients \(p = 0.012 \)
 - 3/40 (7%) in IST patients

- Doubling Scr in 14/60 patients (23% of cohort)
 - 7/20 (35%) of Non-IST patients \(p = 0.195 \) (NS)
 - 7/40 (17%) in IST patients
Immunosuppression in C3G

Results

Remission

- Complete remission = eGFR > 60 or within 15% of baseline, proteinuria <0.5g/24 hr
- Partial remission = Proteinuria reduction by >50% and <3.5g/24 hr, stabilization or improvement in renal function

- 5/20 (25%) of Non-IST patients - CR 2 pts, PR 3 pts
- 28/40 (70%) in IST patients – CR 11 pts, PR 17 pts
 - 19/22 (86%) of MMF + corticosteroids IST
 - 9/18 (50%) of Other IST

- Greatest benefit appeared to be in C3NeF (+) pts
 - ? Autoantibody reduction by IST

p = 0.002
p = 0.018
Immunosuppression in C3G: Rebuttal

• Retrospective Cohort Study by Caliskan et al (Am J Nephrol 2017)
 – 66 Patients with C3G (7 pts DDD, 59 pts C3GN) treated with pre-determined protocol
 • 16 patients with supportive care (ACEi/ARB only)
 • 27 patients treated with MMF + low dose prednisolone (0.15mg/kg/d initially, tapered to 4mg/d by 4-8 weeks)
 • 23 patients treated with other IS regimens
 – Prednisolone alone, cyclophosphamide + prednisolone
 • All patients had supportive care with ACEi/ARB
 – Median followup of 44 months
Immunosuppression in C3G: Rebuttal

• Results
 – eGFR decline >50% in 17/66 patients (26% of cohort)
 • 5/16 (31%) of Non-IS patients
 • 4/23 (17.4%) in Other IS patients \(p = NS \)
 • 8/27 (29.6%) in MMF-based IS patients
 – ESRD in 15/66 patients (23% of cohort)
 • 4/16 (25%) of Non-IS patients
 • 4/23 (17.4%) in Other IS patients \(p = NS \)
 • 7/27 (25.9%) in MMF-based IS patients
Immunosuppression in C3G: Rebuttal

• **Results**

 – **Remission**

 • Complete remission = eGFR > 60 or within 15% of baseline, proteinuria <0.5g/24 hr

 • Partial remission = Proteinuria reduction by >50% and <3.5g/24 hr, stabilization or improvement in renal function

 • 9/16 (56%) of Non-IS patients - CR 3 pts, PR 6 pts

 • 16/27 (59%) in MMF-based IS patients – CR 11 pts, PR 5 pts

 • 16/23 (70%) in Other IS patients – CR 7 pts, PR 9 pts

 \[p = \text{NS} \]
Immunosuppression in C3G: Rebuttal of Rebuttal?

- Retrospective Chart Review by Avasare et al (CJASN, 2018)
- 30 Patients with C3G (1 DDD, 29 C3GN)
 - Treated with MMF 1000mg twice daily x 3 months minimum
 - 28 patients (93%) also received corticosteroids at physician’s discretion - dose not specified
 - 25 patients (83%) also treated with stable dose of ACEi/ARB for antiproteinuric therapy throughout study
 - Median followup of 32 months (range 21-68 months)
Immunosuppression in C3G: Rebuttal of Rebuttal?

- **Results**

 - Complete remission = eGFR improved or within 15% of baseline with decline of proteinuria < 0.5g/g Cr

 - Partial remission = eGFR improved or within 15% of baseline with proteinuria reduction by ≥50% and between 0.5g and 3.5g/g Cr

 - 20 responders achieved complete (n = 10) or partial (n = 10) remission

 - Median time to remission from MMF initiation 291 days

 - 10 non-responders

 - 3/10 non responders progressed to ESRD
Immunosuppression in C3G: Rebuttal of Rebuttal?

Followup

- 8 of 20 responders to MMF tapered off immunosuppression
 - 4 of these 8 patients relapsed within 6 month to 2 years after discontinuation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Responders, n=20</th>
<th>Nonresponders, n=10</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete remission</td>
<td>10 (50%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Partial remission</td>
<td>10 (50%)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Time to remission, mo</td>
<td>10 (3-12)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Proteinuria, mg/g creatinine</td>
<td>729 (215–1619)</td>
<td>5950 (1766–9125)</td>
<td><0.01</td>
</tr>
<tr>
<td>Serum creatinine, mg/dl</td>
<td>1.11 (0.70–1.31)</td>
<td>1.85 (1.02–3.56)</td>
<td>0.01</td>
</tr>
<tr>
<td>ESKD</td>
<td>0</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Relapse off medication</td>
<td>4/8 (50%)</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (percentage) or median (interquartile range). NA, not applicable.
Complement-Targeted Therapy in C3G

• Currently only one approved tool in the toolbox = Eculizumab

• Proven efficacy in other complement-mediated diseases
 – PNH (FDA approved in 2009)
 – aHUS (FDA approved in 2011)

• Since approval, eculizumab used off-label to treat other diseases in which complement is a direct or indirect mediator
Pharmacology of Eculizumab

- Humanized monoclonal antibody against complement C5
 - High affinity binding to C5, prevents cleavage to C5a and C5b
 - Prevents activation of terminal complement pathway
 - Proximal pathways intact
 - Limitation in the treatment of alternative pathway dysregulation
Evidence for Complement-Targeted Therapy in C3 Glomerulopathy

- Animal model supports terminal pathway role in C3G
 - Cfh⁻/⁻ C5⁻/⁻ mice with reduced glomerular inflammation of spontaneous MPGN compared to Cfh⁻/⁻ mice
 - Similar GBM thickening, deposit formation
 - Improved SCr and mortality in Cfh⁻/⁻ C5⁻/⁻ at 12 months of age
 - No significant improvement in albuminuria

<table>
<thead>
<tr>
<th>Mice</th>
<th>n</th>
<th>GBM double contours, %</th>
<th>0</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>Median no. of glomerular neutrophils per gcs (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5⁻/⁻</td>
<td>29</td>
<td></td>
<td>0</td>
<td>25</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.04 (0–0.24)</td>
</tr>
<tr>
<td>Cfh⁻/⁻</td>
<td>19</td>
<td></td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>0.42² (0.08–1.16)</td>
</tr>
<tr>
<td>Cfh⁻/⁻ C5⁻/⁻</td>
<td>32</td>
<td></td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>6</td>
<td>0.16 (0–0.4)</td>
</tr>
</tbody>
</table>
Evidence for Complement-Targeted Therapy in C3 Glomerulopathy

- Clinical evidence
 - Some forms of C3NeF known to activate terminal pathway (C5 to C9)
 - Complement profiles of C3GN and DDD indicate alternative and terminal pathway activation
 - Terminal pathway activation appears to be more prominent in C3GN than in DDD

Zhang et al, CJASN 2014
Complement-Targeted Therapy in C3G

- Prospective, Open-label Proof of Concept Study by Bomback et al (CJASN 2012)
 - Standardized treatment regimen based on aHUS dosing of 900mg q.wk x 4, then 1200mg q.o. wk x 12 months
 - Patients on IS were tapered off during 1st 6 months
 - Suppression of CH50 on eculizumab therapy (0-6 CAE, nl range 60-144 CAE)

 - CH50 low at baseline in 5 of 6 pts (0-49 CAE) - may not be a sufficiently suitable pharmacodynamic biomarker in this disease
Complement-Targeted Therapy in C3G

• Methods – Baseline Patient Characteristics
 – All 6 pts were white male adults (range 20-42 yrs)
 – 3/6 pts w/ recurrent disease in renal allograft
 • 1 DDD, 2 C3GN
 – 5/6 pts previously treated with immunosuppression
 – 6/6 pts had impaired renal function at baseline
 • Median SCr 1.75 mg/dl (range 1.2–2.0 mg/dl).
 – 4/6 pts had nephrotic range proteinuria and/or significant hypoalbuminemia at initiation of therapy
 – Low C3 in 6/6 pts (range 27-80mg/dl, nl 83-177 mg/dl)
Complement-Targeted Therapy in C3G

• Results
 – Response appeared to depend on extent of terminal pathway activation with elevation in sC5b-9

<table>
<thead>
<tr>
<th>ID</th>
<th>sMAC (C5b-9; nl<0.30 mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDD1</td>
<td>1.08</td>
</tr>
<tr>
<td>DDD2</td>
<td>0.21</td>
</tr>
<tr>
<td>DDD3</td>
<td>0.07</td>
</tr>
<tr>
<td>C3GN1</td>
<td>0.71</td>
</tr>
<tr>
<td>C3GN2</td>
<td>0.32</td>
</tr>
<tr>
<td>C3GN3</td>
<td></td>
</tr>
</tbody>
</table>

↓Cr, no ∆ in mild proteinuria
↑Cr, ↑ proteinuria
↑Cr, ↓ proteinuria
↑Cr, no ∆ proteinuria
No ∆ Cr, no ∆ proteinuria
↓Cr (no proteinuria)

Complement-Targeted Therapy in C3G

- Other experience
 - 5 patients, all with DDD (age range 1.9-12.9 yrs)
 - C3 low in all patients, sC5b-9 elevated in 3 of 5 patients
 - Standard pediatric aHUS dosing regimen
 - Improvement in SCr and UPro/Cr in all 5 patients to varying degrees
 - Not correlated to sC5b-9 level
 - Leukocyturia resolved with eculizumab in all 5 patients
Complement-Targeted Therapy in C3G

- Other experience
 - 4 patients, all with improved UPro/Cr on eculizumab
 - All discontinued therapy, with relapse of disease
 - Resumption of eculizumab lead to improvement
Specifically targeting the alternative complement pathway may have greater efficacy in C3G

- C3 inhibitor (Amyndas, Apellis)
- Factor D inhibitor (Achillion)
- Factor D monoclonal Ab (Novartis)
- Factor B monoclonal Ab (Novelmed)
- sCR1 (Zhang et al, JASN 2013; Inflazyme)
Pharmacology of AP Inhibition

- **ACH-0144471**
 - Oral small molecule inhibitor of Factor D
 - Specific inhibitor of the alternative pathway, leaving classical pathway intact

- **APL-2**
 - PEGylated compstatin derivate (C3 inhibitor), administered subcutaneously
Factor D Inhibition in C3G

- Phase 2, Proof of Concept Study of Factor D Inhibitor ACH-0144471 in C3 Glomerulopathy (NCT03369236)
 - Sponsor = Achillion Pharmaceuticals
 - Design = Randomized, Double-Blinded, Placebo-controlled
 - Administration = Oral agent
 - 6 month Treatment Period
 - Recruiting patients ≥18 years of age with C3G with significant proteinuria (>1g/day), eGFR >30mL/min/1.73m²
C3 Inhibition in C3G

- Phase 2 Study of APL-2 in IgAN, SLE Nephritis, Primary Membranous Nephropathy, or C3G (NCT03369236)
 - Sponsor = Apellis Pharmaceuticals
 - Design = Open Label
 - Administration = Subcutaneous infusion once daily
 - 48 week Treatment Period
 - Recruiting patients ≥16, <70 years of age with C3G (as well as IgAN, SLE Nephritis, and primary MN) with significant proteinuria (>1.5g/day), eGFR >30mL/min/1.73m²
Summary

• Past treatment paradigms of MPGN were comprised of nontargeted immunosuppression

• Current paradigm differentiating pathobiology of C3G and immune complex MPGN suggests a disease-specific approach
 – Immunosuppression and eculizumab have both shown benefit in C3G
 – Neither, however, have proven to be uniformly efficacious, or with lasting benefit

• Alternative pathway-targeted therapies in clinical trials promise to directly target C3G pathomechanism